Authors

  1. Glenn, Jordan M. PhD
  2. Gray, Michelle PhD
  3. Binns, Ashley MS

Abstract

Background and Purpose: When evaluating health in older adults, batteries of tests are typically utilized to assess functional fitness. Unfortunately, physician's visits are time-sensitive, and it may be important to develop faster methods to assess functional fitness that can be utilized in professional or clinical settings. Therefore, the purpose of this investigation was to examine the relationship of sit-to-stand (STS) power generated through the STS task with previously established measures of functional fitness, specifically strength, endurance, speed, agility, and flexibility in older adults with and without sarcopenia.

 

Methods: This study consisted of 57 community-dwelling older adults (n = 16 males; n = 41 females). Functional fitness was assessed using the Short Physical Performance Battery (SPPB), Senior Fitness Test, handgrip, gait speed (habitual and maximal), balance, and STS power generated via the Tendo Weightlifting Analyzer. On the basis of data distribution, second-degree polynomial (quadratic) curvilinear models (lines of best fit) were applied for the relationships of 5-time STS time with average and peak power. Zero-order correlations were evaluated between STS power and all other functional fitness measures. Older adults with sarcopenia were also identified (n = 15), and relationships were reevaluated within this subset.

 

Results: STS power (average and peak) was significantly (P <= .01) correlated with physical performance measured via previously established assessments. For average power, this was observed during the senior fitness test (6-minute walk [r = 0.39], 8-ft up-and-go [r = -0.46], arm curl [r = 0.46], and chair stand [r = 0.55]), SPPB (5-time STS time [r = -0.63] and 8-ft walk [r = -0.32]), and other independent functional fitness measures (grip strength [r = 0.65] and maximal gait speed [r = -0.31]). Similar results were observed for peak power during the senior fitness test (6-minute walk [r = 0.39], 8-ft up-and-go [r = -0.46], arm curl [r = 0.45], chair stand [r = 0.52], and sit-and-reach [r = -0.27]), SPPB (5-time STS time [r = -0.60] and 8-ft walk [r = -0.33]), and other independent functional fitness measures (grip strength [r = 0.70] and maximal gait speed [r = -0.32]). Within the sarcopenic subset, for average and peak power, respectively, significant relationships were still retained for handgrip strength (r = 0.57 and r = 0.57), 6-minute walk (r = 0.55 and r = 0.61), chair stand (r = 0.76 and r = 0.81), and 5-time STS time (r = -0.76 and r = -0.80) tests.

 

Discussion/Conclusions: STS power generated via the STS task significantly relates to commonly administered functional fitness measures. These relationships also appear to exist when evaluating these relationships in older adults with sarcopenia. STS power may be utilized as an independent measure of functional fitness that is feasible to incorporate in clinical settings where time and space are often limiting factors.