IV Fluids

When administering IV fluids, the type and amount of fluid may influence patient outcomes. Make sure to understand the differences between fluid products and their effects.

Crystalloids

Crystalloid solutions contain small molecules that flow easily across semipermeable membranes, from the bloodstream into the cells and body tissues. Crystalloid solutions are distinguished by the relative tonicity (before infusion) in relation to plasma and are categorized as isotonic, hypotonic, or hypertonic.

Isotonic solutions

Isotonic solutions have a concentration of dissolved particles similar to plasma, and an osmolality of 250 to 375 mOsm/L. These fluids remain within the extracellular compartment and are distributed between intravascular (blood vessels) and interstitial (tissue) spaces, increasing intravascular volume. They are used primarily to treat fluid volume deficit.

General nursing considerations:

- Document baseline vital signs, edema, lung sounds, and heart sounds, and continue monitoring during and after the infusion.
- Monitor for continued signs of hypovolemia, including urine output < 0.5 mL/kg/hour, poor skin turgor, tachycardia, weak pulse, and hypotension.
- Monitor for signs of hypervolemia such as hypertension, bounding pulse, pulmonary crackles, dyspnea, shortness of breath, peripheral edema, jugular vein distension (JVD) and extra heart sounds such as S3.

<table>
<thead>
<tr>
<th>I.V. Fluid Osmolarity Composition</th>
<th>Uses/Clinical Considerations</th>
</tr>
</thead>
</table>
| 0.9% NaCl (Normal Saline Solution, NSS) 308 mOsm/L Na⁺ 154 mmol/L Cl⁻ 154 mmol/L | • Fluid of choice for resuscitation efforts.
• Used to replace fluid loss from hemorrhage, severe vomiting or diarrhea, heavy drainage from GI suction, fistulas or wounds.
• Use to treat shock, mild hyponatremia, metabolic acidosis, hypercalcemia.
• Caution in cardiac or renal disease, may cause fluid volume overload.
• The only solution that should be administered with blood products.
• Monitor for hyperchloremia with large volumes of fluid replacement with 0.9%NaCl. |
Lactated Ringer’s Solution (LR, Ringer’s Lactate)

- First-line fluid resuscitation for burn and trauma patients.
- Used to treat acute blood loss or hypovolemia due to third-space fluid shift; GI loss and fistula drainage; electrolyte loss; and metabolic acidosis.
- Contraindicated in patients who cannot metabolize lactate, (i.e. liver disease) or experiencing lactic acidosis.
- Do not administer if pH > 7.5. (Normal liver will convert LR to bicarbonate worsening alkalosis).
- Caution in patients with renal failure (LR contains some potassium and hyperkalemia can occur).

| 273 mOsm/L | Na⁺ 130mEq/L | K⁺ 4 mEq/L | Ca++ 3 mEq/L | Cl⁻ 109 mEq/L |

5% dextrose in water (D₅W)

- Both isotonic and hypotonic. Initially dilutes osmolality of extracellular fluid (hypotonic); once cell has used dextrose, remaining saline and electrolytes act isotonic, expanding the extracellular compartment.
- Provides free water for the kidneys, aiding renal excretion of solutes.
- May be used to treat hypernatremia.
- Should not be used alone to treat fluid volume deficit because it dilutes plasma electrolyte concentrations.
- Contraindicated in resuscitation, early postoperative period, and patients with known or suspected increased intracranial pressure (ICP).
- Provides some calories, but not enough nutrition for prolonged use.

Additional isotonic solution:

Ringer’s Solution
Similar to LR but does not contain lactate. Not an alkalizing agent; not ideal for patients with metabolic acidosis.

Plasmalyte
Electrolyte composition similar to plasma; can be infused with packed red blood cells. Less likely than other fluids to lead to dilutional or hyperchloremic acidosis.

Hypotonic solutions

Hypotonic solutions have a concentration of dissolved particles lower compared to plasma and an osmolality < 250 mOsm/L. Hypotonic fluids lower serum osmolality within the vascular space by causing fluid to shift out of the blood into the cells and tissue spaces. Typically used to treat conditions causing intracellular dehydration, such as diabetic ketoacidosis and hyperosmolar hyperglycemic states.

General nursing considerations:
- May worsen existing hypovolemia and hypotension causing cardiovascular collapse.
- Monitor for signs of fluid volume deficit, such as confusion in older adult patients and dizziness.
• Never administer to patients at risk for increased ICP as the potential fluid shift may cause cerebral edema. Avoid in patients with liver disease, trauma or burns.

<table>
<thead>
<tr>
<th>I.V. Fluid Osmolarity Composition</th>
<th>Uses/Clinical Considerations</th>
</tr>
</thead>
</table>
| 0.45% NaCl (1/2 NS) 154 mOsm/L Na⁺ 77 mEq/L Cl⁻ 77 mEq/L | • Used to treat hypernatremia.
• Caution in patients with heart failure, severe renal insufficiency, and edema with sodium retention.
• May cause fluid overload resulting in decreased electrolyte concentrations, over hydration, congested states or pulmonary edema.
• Rapid infusion may cause hemolysis of red blood cells (RBCs). |

Additional hypotonic solutions:

<table>
<thead>
<tr>
<th>Solution</th>
<th>Uses/Clinical Considerations</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.33% NaCl</td>
<td>Allows kidneys to retain needed amounts of water. Caution in patient with heart failure and severe renal insufficiency. Adverse effects include pulmonary edema, febrile reactions. Typically administered with dextrose to increase tonicity.</td>
</tr>
<tr>
<td>0.225% NaCl</td>
<td>The most hypotonic fluid available, often recommended as maintenance fluid for pediatric patients. Avoid rapid infusion to prevent hemolysis. Avoid use unless mixed with dextrose.</td>
</tr>
<tr>
<td>2.5% dextrose in water (D₂₅W)</td>
<td>Used to treat dehydration and decrease sodium and potassium levels. Not administered with blood as it can cause hemolysis of RBCs.</td>
</tr>
</tbody>
</table>

Hypertonic solutions

Hypertonic solutions have a concentration of dissolved particles higher than plasma and an osmolality > 375 mOsm/L. A higher solute concentration causes the osmotic pressure gradient to draw water out of cells, increasing extracellular volume. These fluids are often used as volume expanders and may be prescribed for hyponatremia (low sodium). They may also benefit patients with cerebral edema.

General nursing considerations:

• Administer only in high acuity areas. For short-term use to correct critical electrolyte abnormalities.
• Monitor electrolytes and assess for hypervolemia. May cause fluid volume overload and pulmonary edema.
• Avoid in patients with cardiac or renal conditions who are dehydrated, and in patients with diabetic ketoacidosis.

<table>
<thead>
<tr>
<th>I.V. Fluid Osmolarity Composition</th>
<th>Uses/Clinical Considerations</th>
</tr>
</thead>
<tbody>
<tr>
<td>3% NaCl</td>
<td>• Used for treatment of severe, critical symptomatic hyponatremia.</td>
</tr>
<tr>
<td>Solution</td>
<td>Osmolality</td>
</tr>
<tr>
<td>----------</td>
<td>------------</td>
</tr>
<tr>
<td>1030 mOsm/L</td>
<td>5% NaCl</td>
</tr>
<tr>
<td>1710 mOsm/L</td>
<td>5% NaCl</td>
</tr>
<tr>
<td>406 mOsm/L</td>
<td>Dextrose 5% in 0.45% NaCl (D₅ ½ NS)</td>
</tr>
<tr>
<td>560 mOsm/L</td>
<td>Dextrose 5% in 0.9% NaCl (D₅NS)</td>
</tr>
<tr>
<td>527 mOsm/L</td>
<td>Dextrose 5% in Lactated Ringer’s (D₅LR)</td>
</tr>
</tbody>
</table>

Additional Hypertonic Solutions:

20% Dextrose in water (D₂₀W):
Acts as an osmotic diuretic, causes a fluid shift between various compartments. Promotes diuresis.

50% Dextrose in water (D₅₀W):
Administered via IV bolus to treat patients with severe hypoglycemia.
Colloids

Colloid solutions contain large molecules that do not pass through semipermeable membranes and therefore remain in the blood vessels. Also known as volume/plasma expanders, colloids expand intravascular volume by drawing fluid from the interstitial space into the vessels through higher oncotic pressure. Less total volume is required compared to IV fluids. Colloids are indicated for patients in malnourished states and patients who cannot tolerate large infusions of fluid.

General nursing considerations:
- Before administering a colloid, take a careful allergy history.
- Use 18-gauge or larger needle for administration of colloid solutions.
- Monitor intake and output closely and for signs of hypervolemia: hypertension, dyspnea, crackles in lungs, jugular venous distension, edema, bounding pulse.
- Monitor coagulation indexes.

<table>
<thead>
<tr>
<th>I.V. Fluid Osmolarity</th>
<th>Clinical Considerations</th>
</tr>
</thead>
<tbody>
<tr>
<td>Albumin (5%)</td>
<td>• Human albumin solution</td>
</tr>
<tr>
<td>309 mOsm/L</td>
<td>• Used for moderate protein replacement, and to achieve hemodynamic stability in shock states.</td>
</tr>
<tr>
<td></td>
<td>• Considered a blood transfusion product, use the same protocols and nursing precautions when administering albumin.</td>
</tr>
<tr>
<td>Albumin (25%)</td>
<td>• Contraindicated in severe anemia, heart failure or known sensitivity to albumin.</td>
</tr>
<tr>
<td>312 mOsm/L</td>
<td>• Angiotensin-converting enzyme (ACE) inhibitors should be withheld at least 24 hours before administration due to risk of atypical reaction (flushing and hypotension).</td>
</tr>
</tbody>
</table>

Additional Colloid solutions (less commonly used):

- **Low-molecular weight dextran (LMWD); High-molecular weight dextran (HMWD)**
 Contains polysaccharide molecules that behave like colloids. Used for volume expansion, fluid resuscitation. Contraindicated in thrombocytopenia, hyperfibrinogenemia, avoid with hemorrhagic shock.

- **Hetastarch (6%); Hespan**
References:

