Authors

  1. Dolmage, Thomas E. MSc
  2. Evans, Rachael A. MBChB, PhD
  3. Brooks, Dina PhD
  4. Goldstein, Roger S. MD

Abstract

PURPOSE: Partitioning exercise by 1-legged cycling is more effective than conventional training in patients with chronic obstructive pulmonary disease. Similarly, inhaling helium-hyperoxia can extend conventional exercise tolerance. This study aimed to determine whether breathing helium-hyperoxia could increase the tolerance of a high-intensity exercise session achieved by 1-legged cycling.

 

METHODS: Participants completed 2 high-intensity, constant power, 1-legged cycle tests to intolerance (tlimit). In a randomized order, they inspired 40% oxygen with the balance helium via mask and 1-way valve, 1-legged helium-hyperoxia (1L-HH), or room air with supplemental oxygen via a nasal cannula, 1-legged nitrogen-hyperoxia (1L-NH). We assessed quadriceps fatigue from the change in maximal voluntary contraction (FMVC) and transcutaneously stimulated twitch force (Ftwitch).

 

RESULTS: Fifteen participants (forced expiratory volume in 1 second [SD] = 36 [18]% predicted; forced expiratory volume in 1 second/forced vital capacity = 34 [14]%; peak oxygen uptake = 12.8 [2.9] mL[middle dot]kg-1[middle dot]min-1) completed the study. Self-reported "leg fatigue" was a reason for stopping 25 of 30 tests. There was no significant difference in tlimit (0.2 [-1.4 to 1.8] min) between 1L-HH (12.2 [5.2] min) and 1L-NH (12.0 [4.1] min), or in FMVC measured shortly after HH and NH tests (P= .09). The Ftwitch was less after exercise (P< .05) in both conditions, without a difference between conditions (P= .46).

 

CONCLUSIONS: Inspiring a helium-hyperoxia mixture does not increase the endurance of what would be a typical training session, breathing supplemental oxygen, of high-intensity 1-legged constant power exercise. Leg muscle fatigue was similar after 1-legged exercise with and without breathing the helium mixture.