Buy this Article for $7.95

Have a coupon or promotional code? Enter it here:

When you buy this you'll get access to the ePub version, a downloadable PDF, and the ability to print the full article.

Keywords

antimicrobial, biofilm, biofilm prevention, surfactant, wound, wound dressing, sequestration

 

Authors

  1. Salisbury, Anne-Marie PhD
  2. Percival, Steven L. PhD

ABSTRACT

OBJECTIVE: To assess the biofilm prevention action of two wound dressings, a concentrated surfactant gel preserved with antimicrobials and a concentrated surfactant gel with 1% silver sulfadiazine.

 

METHODS: The microorganisms Staphylococcus aureus, methicillin-resistant S aureus, Staphylococcus epidermidis, Pseudomonas aeruginosa, and Enterococcus faecalis were used. Several biofilm models were used whereby the surfaces of each model were coated with either the concentrated surfactant gel preserved with antimicrobials or the concentrated surfactant gel with SSD before biofilm growth.

 

MAIN RESULTS: Results showed the concentrated surfactant gel with SSD prevented biofilm growth in the modified minimum biofilm eradication concentration and Centers for Disease Control and Prevention biofilm models. The concentrated surfactant gel preserved with antimicrobials prevented microbial penetration for up to 48 hours, whereas the concentrated surfactant with SSD prevented microbial penetration for at least 72 hours. Using confocal laser scanning microscopy, researchers showed that a surface coated with the concentrated surfactant gel preserved with antimicrobials enhanced microbial sequestration of planktonic microorganisms.

 

CONCLUSIONS: These results demonstrated that a concentrated surfactant gel preserved with antimicrobials can sequester and cause the immobilization of planktonic bacteria. Further, the concentrated surfactant gel with SSD can effectively kill planktonic and sessile microorganisms.