Buy this Article for $10.95

Have a coupon or promotional code? Enter it here:

When you buy this you'll get access to the ePub version, a downloadable PDF, and the ability to print the full article.


  1. Hinman, Martha R. PT, EdD
  2. O'Connell, Janelle K. PT, DPT, PhD, ATC, LAT
  3. Dorr, Melissa PT, DPT
  4. Hardin, Robyn PT, DPT
  5. Tumlinson, Allison B. PT, DPT
  6. Varner, Bria PT, DPT


Background and Purpose: Falls on stairs are a common cause of injury and death among older adults. Although stair climbing is a component of some instruments that assess activities of daily living, normal speeds for safe stairway ambulation have not been established. Furthermore, little is known about which components of functional mobility are most highly associated with stair-climbing speed. The purposes of this study were to determine the range of normal stair-climbing speeds for ambulatory, community-dwelling older adults and identify which functional mobility tests could best explain this speed.


Methods: Twenty men and 34 women older than 65 years completed 6 functional mobility tests, including timed heel rises, timed chair stands, functional reach, one-legged stance time (OLST), a timed step test (alternately touching a step 10 times), and self-selected gait speed. Participants were then timed as they ascended and descended a flight of 8 to 10 steps. Combined ascent-descent times were used to calculate stair-climbing speed in steps per second. Stepwise regression techniques determined the best functional predictors for stair-climbing speed.


Results: Participants ascended and descended stairs at an average speed of 1.3 steps per second; men tended to ambulate stairs more quickly than women. The best predictors of stair-climbing speed were usual gait speed and OLST (R = 0.79; P = .01), which explained 63% of the variance in stair-climbing speed.


Discussion: Our results were similar to others who reported stair-climbing speeds ranging from 1.1 to 1.7 steps per second for older adults. However, the 2 predictors identified in this study provide a simpler and more accurate model for estimating stair-climbing speed than has been previously reported. Further research is needed to determine whether this speed is sufficient for negotiating stairs in an emergency. In addition, further study is needed to determine which tests/measures best differentiate individuals who can and cannot independently climb a typical flight of stairs.


Conclusions: An older adult's stair-climbing speed can be accurately estimated by using a model that includes his or her usual gait speed and OLST. This information will help health care professionals and directors of residential facilities make appropriate decisions related to living accommodations for their older adult clients.